phous with that of $\mathrm{Th}_{2} \mathrm{Ni}_{17}$ (Florio, Baenziger \& Rundle, 1956) and is a derivative structure af CaZn_{5} (Haucke, 1940). However, we found $\mathrm{Ba}_{2} \mathrm{Mg}_{17}$ to dissolve Mg substitutionally in its lattice. The substitution occurs only on the superlattice (here the $\mathrm{CaZn} \mathrm{n}_{5}$ type lattice is considered to be the sublattice) and moreover only in a short range order. As partial evidence, we submit the 20° oscillation photographs of the single crystals obtained from samples corresponding to the atomic composition ratios of BaMg_{9} and $\mathrm{Ba}_{2} \mathrm{Mg}_{17}$, rotated about the c^{*} axis, as shown in Fig. 1. The $3 n(n=0,1,2,3, \ldots)$ layers are diffractions due mostly to the sublattice whereas the layers $1,2,4,5$, \ldots etc are solely due to the superlattice. It is seen that the diffraction due to the superlattice in BaMg_{9} lacks a mirror plane of symmetry across the zero layer. Furthermore, when the equi-inclination zero-layer Weissenberg photographs for both BaMg_{9} and $\mathrm{Ba}_{2} \mathrm{Mg}_{17}$ were made (rotated about the orthohexagonal axis) as shown in Fig. 2, the following conclusions were reached. The superlattice of BaMg_{9} does not have $6 / \mathrm{mmm}$ diffraction symmetry whereas $\mathrm{Ba}_{2} \mathrm{Mg}_{17}$ shows $6 / \mathrm{mmm}$ diffraction symmetry for both the sub- and the super-lattice. The latter has been confirmed to be a derivative of a CaZn_{5} type structure as suggested by Goldish \& Marsh (1955) but it is not disordered and the c_{0} axis dimension is $15.52 \AA$ instead of $10.53 \AA$ (a_{0} being $10 \cdot 61 \AA$). The substitutional
solution of Mg atoms in the superlattice of $\mathrm{Ba}_{2} \mathrm{Mg}_{17}$ thus creates a disorder which cannot be detected by powder patterns as in the case of the investigation by Kripyakevich \& Evdokimenko. Our complete investigation of all the intermediate phases of $R-\bar{X}$ systems (where $R=S$, Ba and $X=\mathrm{Li}, \mathrm{Mg}$) is in its final stage and will be reported in the near future.

References

Florio, J. V., Baenziger, N. C. \& Rundle, R. E. (1956). Acta Cryst. 9, 367.
Goldish, E. \& Marsh, R. E. (1955). Abstr. ACA Summer Meeting, p. 11. Cited by Pearson, W. B. Handbook of Lattice Spacings. London 1958: Pergamon Press.
Miskell, C. F. (1948). M. S. Thesis, Syracuse UniversityHaucke, W. (1940). Z. anorg. Chem. 244, 17.
Klemm, W. \& Dinkelacker, F. (1947). Z. anorg. Chem. 255, 2.
Kripyakevich, P.I. \& Evdokimenko, V.I. (1962). Soviet Phys. Cryst. 7, 22.
Morarov, E. S. \& Vinogradov, S. I. (1956). Soviet Phys. Cryst. 1, 634.
Nowotny, H. (1942). 34, 247.
Ray, J. P. (1947. Ph.D.Thesis, Syracuse University.
Zeer, W. C. (1956). Ph.D.Thesis, Syracuse University.

Acta Cryst. (1963). 16, 698

Bond lengths and angles in pentaerythritol tetranitrate. By James Trotter, Department of Chemistry, University of British Columbia, Vancouver 8, B.C., Canada

(Received 17 December 1962)

Very little information is available about the detailed structures of nitrate esters. Electron-diffraction investigations of fluorine nitrate and methyl nitrate (Pauling \& Brockway, 1937) indicate non-planar molecules, while a more recent microwave study of methyl nitrate (Dixon and Wilson, 1961) suggests that the molecule is planar. The only X-ray analysis is that on pentaerythritol tetranitrate $\mathrm{C}\left(\mathrm{CH}_{2} \mathrm{O} . \mathrm{NO}_{2}\right)_{4}$ (Booth and Llewellyn, 1947); the authors noted three remarkable features of the molecular structure (Fig. 1): (i) the $\mathrm{C}(0)-\mathrm{C}(1)$ bond

Fig. 1. Numbering of atoms in pentaerythritol tetranitrate.
($1.50 \AA$) is shorter than $1.54 \AA$; (ii) the $\mathrm{C}(1)-\mathrm{O}(\mathrm{l})$ bond ($1.37 \AA$) is considerably shorter than a normal single bond; (iii) the $\mathrm{O}(\mathrm{l})-\mathrm{N}$ bond is of normal length. It might also be added that the $\mathrm{N}-\mathrm{O}(2)$ and $\mathrm{N}-\mathrm{O}(3)$ bonds seem to be abnormally long. No satisfactory explana-
tion of these features can be given, and since no such abnormalities were noted in a recent analysis of cis-1,2acenaphthenediol dinitrate (Mak \& Trotter, 1963), the structure of pentaerythritol tetranitate has been reinvestigated to determine whether the abnormal distances are real.

Table 1. Progress of refinement

	R	$\Sigma w . \Delta F^{2}$
Initial coordinates	0.259	1129
lst least-squares cycle	$0 \cdot 180$	654
2nd	$0 \cdot 160$	529
3rd	$0 \cdot 153$	525
4th	0.152	496
5th	-	-

Using Booth and Llewellyn's structure factor data (with the omission of the reflexions 021, 012, 121, 220, 222 , 232 , which might be affected by extinction), the scattering factors for C, N, O of Berghuis, Haanappel, Potters, Loopstra, MacGillavry \& Veenendaal (1955) and an overall $B=4 \cdot 5 \AA^{2}$, the positional and isotropic thermal parameters and a scale factor were refined with a leastsquares program for the IBM 1620 computer, written in FORTRAN, and with the general strategy suggested by Cruickshank (1961). The function minimized was $\Sigma w\left(\left|F_{o!}^{\prime}-\left|F_{c}\right|\right)^{2}\right.$, with $w=\mid F_{o}!/ 10$ if $F_{o}<10$ and $w=10 / F_{o}^{\prime}$ if $F_{o} \geqslant 10$. Refinement was complete in five cycles (Table 1), the final scale factor on Booth and Llewellyn's data being $1 \cdot 079$.

Table 2. Final positional and thermal parameters with standard deviations

Atom	x	$10^{5} \times \sigma(x)$	y	$10^{5} \times \sigma(y)$	z	$10^{5} \times \sigma(z)$	B	$\sigma(B)$
$\mathrm{C}(0)$	$0 \cdot 0000$	0	$0 \cdot 0000$	0	$0 \cdot 0000$	0	$1.56 \AA^{2}$	$0 \cdot 34$
$\mathrm{C}(1)$	0. 1207	122	$0 \cdot 0636$	117	$0 \cdot 1270$	164	$2 \cdot 36$	$0 \cdot 20$
$\mathrm{O}(1)$	$0 \cdot 1608$	86	-0.0483	78	$0 \cdot 2681$	126	$2 \cdot 58$	$0 \cdot 13$
N	0.2870	104	-0.0165	101	$0 \cdot 3716$	134	$2 \cdot 41$	$0 \cdot 16$
$\mathrm{O}(2)$	$0 \cdot 3158$	101	-0.1050	99	$0 \cdot 4951$	173	$4 \cdot 32$	$0 \cdot 20$
$\mathrm{O}(3)$	$0 \cdot 3500$	97	$0 \cdot 0927$	98	$0 \cdot 3240$	137	$4 \cdot 08$	$0 \cdot 20$

The final positional and thermal parameters with their standard deviations (calculated from the inverses of the diagonal terms in the least-squares matrix) are listed in Table 2, and the bond lengths and valency angles are compared in Table 3 with the values of Booth and

Table. 3. Bond lengths and valency angles (with standard deviations)

	Booth and Llewellyn (1947)	Present analysis
$\mathrm{C}(0)-\mathrm{C}(1)$	1.498 §	$1.537 \pm 0.011 \AA$
$\mathrm{C}(1)-\mathrm{O}(1)$	$1 \cdot 371$	1.462 ± 0.014
$\mathrm{O}(1)-\mathrm{N}$	$1 \cdot 364$	$1 \cdot 404 \pm 0.012$
$\mathrm{N}-\mathrm{O}(2)$	1.272	$1 \cdot 203 \pm 0.014$
$\mathrm{N}-\mathrm{O}(3)$	$1 \cdot 285$	$1 \cdot 225 \pm 0.013$
$\mathrm{C}(1)-\mathrm{C}(0)-\mathrm{C}\left(1^{\prime}\right)$	112.6	$113.0 \pm 0.6^{\circ}$
$\mathrm{C}(1)-\mathrm{C}(0)-\mathrm{C}\left(1^{\prime \prime}\right)$	107.9	$107 \cdot 7 \pm 0 \cdot 6$
$\mathrm{C}(0)-\mathrm{C}(1)-\mathrm{O}(1)$	108.5	$105 \cdot 6 \pm 0 \cdot 7$
$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{N}$	$115 \cdot 7$	$112 \cdot 6 \pm 0.7$
$\mathrm{O}(1)-\mathrm{N}-\mathrm{O}(2)$	116.1	112.5 ± 0.8
$\mathrm{O}(1)-\mathrm{N}-\mathrm{O}(3)$	$121 \cdot 1$	$117 \cdot 1 \pm 0 \cdot 8$
$\mathrm{O}(2)-\mathrm{N}-\mathrm{O}(3)$	122.7	$130 \cdot 4 \pm 0.9$

Llewellyn. It is immediately apparent that none of the remarkable features previously noted is real. The $\mathrm{C}(0)-\mathrm{C}(1)$ distance $\left(1 \cdot 53_{7} \AA\right)$ is equal to the normal single-bond length; the $\mathrm{C}(1)-\mathrm{O}(1) \quad\left(1 \cdot 46_{2} \AA\right)$ and $\mathrm{O}(\mathrm{l})-\mathrm{N}(1)\left(1 \cdot 40_{4} \AA\right)$ bonds are both slightly longer than the distances quoted for single bonds (1.43 and $1.36 \AA$ respectively in Tables of Interatomic Distances, 1958). All the dimensions of the nitrate group are very similar
to those in nitric acid (Millen and Morton, 1960). The pentaerythritol tetranitrate molecule thus exhibits no unusual features.

The author is indebted to the National Research Council of Canada for financial support, to Norman Camerman for his collaboration in writing the leastsquares program, and to the staff of the University of British Columbia Computing Centre for assistance with the operation of the computer.

References

Berghuis, J., Haanappel, IJ. M., Potters, M., Loopstra, B. O., MacGillavry, C. H. \& Veenendaal, A. L. (1955). Acta Cryst. 8, 478.

Воoth, A. D. \& Llewellyn, F. J. (1947). J. Chem. Soc. p. 837.

Cruickshank, D. W. J. (1961). Computing Methods and the Phase Problem in X-ray Crystal Analysis, p. 41. Pergamon Press.
Dixon, W. B. \& Wilson, E. B. (1961). J. Chem. Phys. 35, 191.
Mak, T. C. W. \& Trotter, J. (1963). In preparation.
Millen, D. J. \& Morton, J. R. (1960). J. Chem. Soc. p. 1523.

Pauling, L \& Brockway, L. O. (1937). J. Amer. Chem. Soc. 59, 13.
Tables of Interatomic Distances and Configuration in Molecules and Ions (1958). Chem. Soc. Special Publ. No. 11.

Acta Cryst. (1963). 16, 699
Magnetically different crystal modifications of copper(II) salicylate. Ву Мотомichi Inoue, Michiniko Kishita and Masaji Kubo, Chemistry Department, Nagoya University, Chikusa, Nagoya, Japan
(Received 29 December 1962)

Ploquin (1951; Foëx, 1957) has determined the magnetic susceptibility of copper(II) salicylate tetrahydrate, which yields a magnetic moment per copper atom equal to about l-44 Bohr magnetons. This subnormal magnetic moment smaller than the spin-only moment $1.73 \mathrm{~B} . \mathrm{M}$. for one unpaired electron is not surprising as it stands, because a number of copper(II) carboxylates show subnormal magnetic moments (Figgis \& Martin, 1956; Kondo \& Kubo, 1958; Asai, Kishita \& Kubo, 1959). In fact, van Niekerk \& Schoening (1953) have shown that in the crystals of copper(II) acetate monohydrate, copper atoms are bridged in pairs by four $\mathrm{Cu}-\mathrm{O}-\mathrm{C}-\mathrm{O}-\mathrm{Cu}$ links with the $\mathrm{Cu}-\mathrm{Cu}$ distance as short as $2 \cdot 64 \AA$ permitting spin interaction between the copper atoms involved in the
pair. However, a complete X-ray crystal analysis carried out by Hanic \& Michalov (1960) on copper(II) salicylate tetrahydrate has indicated that planar centrosymmetric molecules $\mathrm{Cu}\left(\mathrm{C}_{6} \mathrm{H}_{4} \text {. OH. } \mathrm{CO}_{2}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ are linked in the structure by a system of hydrogen bonds in which two remaining water molecules also take part. The shortest $\mathrm{Cu}-\mathrm{Cu}$ distance is equal to $3.728 \AA$, which would lead to a magnetic moment of about $1 \cdot 9 \pm 0 \cdot 1$ B.M., normally observed for a majority of copper(II) salts. The present investigation has been undertaken in order to clarify this apparant discrepancy.

Copper(II) salicylate tetrahydrate was prepared in accordance with a method employed by Hanic and Michalov. The solution of copper(II) sulfate pentahydrate

